具备介孔结构的交互式纳米复合材料提高医药废弃物治理效果(英文)Efficacy improvement of pharmaceutical waste remediation using interactive nanocomposites with tunable mesopores and structure
李翠霞;张玉杭;胡瑞兵;BASHIR Sajid;刘静波;
摘要(Abstract):
两种不同类型的纳米材料,TiO_2和还原氧化石墨烯(Reduced graphene oxide, RGO)复合制备出性能优异的复合纳米光催化材料(RGO-TiO_2)。具备商业化前景的湿化学法制备的交互式光催化剂不仅可以对环境刺激做出反应,而且能够自我调节其结构和生物化学性质。采用溶胶-凝胶结合原位模板法制备了纳米复合粒子RGO-TiO_2,其粒径约为10.5 nm,引入水溶性聚合物聚乙烯吡咯烷酮(PVP)对RGO-TiO_2多孔纳米材料进行改性,以控制其内部通道和孔隙率,介孔孔径从3.41 nm增大到4.81 nm,大幅提高了对四环素(TCH, C_(22)H_(24)N_2O_8)的光催化降解效率。高降解效率主要源于催化剂表面H_2O和·OH吸附和扩散速率的提高以及异质结对光催化剂固有性能的改善。当其用于降解四环素医药废物时,其反应活性提高了30%。利用电子显微镜研究推断出了可能的"电子拓扑",Ti中从p轨道移动到d轨道时采用的是电子态的形状传播。电子局域化抑制了激发态电子和空穴的复合,延长带电载流子(电子、空穴和激子)寿命,从而提高了对TCH的降解效率。
关键词(KeyWords): 纳米复合材料;还原氧化石墨烯负载二氧化钛;介孔模板;湿化学合成;光催化;四环素降解
基金项目(Foundation): Supported by the National Nature Science Foundation of China (51764039);; the Chinese Scholarship Council (201608625038);; the Petroleum Research Fund of the American Chemical Society (53827-UR10);; the Robert Welch Foundation (Departmental Grant,AC-0006)
作者(Authors): 李翠霞;张玉杭;胡瑞兵;BASHIR Sajid;刘静波;
DOI: 10.13482/j.issn1001-7011.2021.08.158
参考文献(References):
- [1] GOTHWAL R,SHASHIDHAR T.Antibiotic pollution in the environment:a review [J].CLEAN-Soil,Air,Water,2015,43(4):479-489.
- [2] FREYRIA F S,GEOBALDO F,BONELLI B.Nanomaterials for the abatement of pharmaceuticals and personal care products from wastewater [J].Applied Sciences,2018,8(2):170.
- [3] ZHANG Y,WU B,XU H,et al.Nanomaterials-enablebled water and wastewater treatment [J].NanoImpact,2016,3:22-39.
- [4] LI Q Y,LU G X.Controlled synthesis and photocatalytic investigation of different-shaped one-dimensional titanic acid nanomaterials [J].Journal of Power Sources,2008,185(1):577-583.
- [5] YADAV S,JAISWAR G.Review of undoped/doped TiO2 nanomaterial;synthesis and photocatalytic and antimicrobial activity [J].Journal of the Chinese Chemical Society,2017,64(1):103-116.
- [6] KIM H S,KIM D,KWAK B S,et al.Synthesis of magnetically separable core@shell structured NiFe2O4@TiO2 nanomaterial and its use for photocatalytic hydrogen production by methanol/water splitting [J].Chemical Engineering Journal,2014,243:272-279.
- [7] SAVAGE N,DIALLO M S.Nanomaterials and water purification:opportunities and challenges [J].Journal of Nanoparticle Research,2005,7(4-5):331-342.
- [8] CHEN P,WANG F L,CHEN Z F,et al.Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst:the significant roles of reactive oxygen species [J].Applied Catalysis B:Environmental,2017,204:250-259.
- [9] MIKLOS D B,REMY C,JEKEL M,et al.Evaluation of advanced oxidation processes for water and wastewater treatment-a critical review [J].Water Research,2018,139:118-131.
- [10] DEWIL R,MANTZAVINOS D,POULIOS I,et al.New perspectives for advanced oxidation processes [J].Journal of Environmental Management,2017,195:93-99.
- [11] BARZEGAR M H,GHAEDI M,AVARGANI V M,et al.Electrochemical synthesis of Zn∶ZnO/Ni2P and efficient photocatalytic degradation of auramine O in aqueous solution under multi-variable experimental design optimization [J].Polyhedron,2019,165:1-8.
- [12] GUAN L Z,ZHAO L,WAN Y J,et al.Three-dimensional graphene-based polymer nanocomposites:preparation,properties and applications [J].Nanoscale,2018,10(31):14788-14811.
- [13] MUNIR K S,WEN C,LI Y C.Carbon nanotubes and graphene as nanoreinforcements in metallic biomaterials:a review [J].Advanced Biosystems,2019,3(3):1800212.
- [14] DIMIEV A M,EIGLER S.Graphene oxide:fundamentals and applications [M].New York:John Wiley & Sons,Ltd,2016:314-363.
- [15] CELASCO E,CHAIKA A N,STAUBER T,et al.Handbook of graphene:biosensors and advanced sensors [M].New York:John Wiley & Sons,Ltd,2019:143-179.
- [16] HANAOR D A,SORRELL C C.Sand supported mixed-phase TiO2 photocatalysts for water decontamination applications [J].Advanced Engineering Materials,2014,16(2):248-254.
- [17] WANG P F,AO Y H,WANG C,et al.Enhanced photo electrocatalytic activity for dye degradation by graphene-titania composite film electrodes [J].Journal of Hazardous Materials,2012,223:79-83.
- [18] ZAABA N I,FOO K L,HASHIM U,et al.Synthesis of graphene oxide using modified hummers method:solvent influence [J].Procedia Engineering,2017,184:469-477.
- [19] KHAN U A,LIU J J,PAN J B,et al.Fabrication of flower-shaped hierarchical rGO QDs-Bi-Bi2WO6/EP floating photocatalyst:eminent degradation kinetic under sun-like irradiation [J].Applied Surface Science,2019,484:341-353.
- [20] LI C X,HU R B,LU X F,et al.Efficiency enhancement of photocatalytic degradation of tetracycline using reduced graphene oxide coordinated titania nanoplatelet [J].Catalysis Today,2020,350:171-183.
- [21] SUN P Z,LEE W N,ZHANG R C,et al.Degradation of DEET and caffeine under UV/chlorine and simulated sunlight/chlorine conditions [J].Environmental Science & Technology,2016,50(24):13265-13273.
- [22] YAN W,LIU M M,LIU Y Q,et al.A novel mica-titania@graphene core-shell structured antistatic composite pearlescent pigment [J].Dyes and Pigments,2017,136:197-204.
- [23] LV T,WU M H,GUO M X,et al.Self-assembly photocatalytic reduction synthesis of graphene encapsulated LaNiO3 nanoreactor with high efficiency and stability for photocatalytic water splitting to hydrogen [J].Chemical Engineering Journal,2019,356:580-591.
- [24] HATHWAY T,JENKS W S.Effects of sintering of TiO2 particles on the mechanisms of photocatalytic degradation of organic molecules in water [J].Journal of Photochemistry and Photobiology A:Chemistry,2008,200(2):216-224.
- [25] REZAEI B,SOLEIMANY R,ENSAFI A A,et al.Photocatalytic degradation enhancements of dyes with bi-functionalized zones of modified nanoflower like TiO2 with Pt-C3N4 under sunlight irradiation [J].Journal of Environmental Chemical Engineering,2018,6(6):7010-7020.
- [26] SANTARA B,GIRI P K,IMAKITA K,et al.Microscopic origin of lattice contraction and expansion in undoped rutile TiO2 nanostructures [J].Journal of Physics D:Applied Physics,2014,47(21):215302.
- [27] KAMBLE S P,SAWANT S B,SCHOUTEN J C,et al.Photocatalytic and photochemical degradation of aniline using concentrated solar radiation [J].Journal of Chemical Technology and Biotechnology,2003,78(8):865-872.
- [28] KIM S P,CHOI M Y,CHOI H C.Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation [J].Materials Research Bulletin,2016,74:85-89.
- [29] AN T,LIU J,LI G Y,et al.Structural and photocatalytic degradation characteristics of hydrothermally treated mesoporous TiO2 [J].Applied Catalysis A:General,2008,350(2):237-243.
- [30] ?TENGL V,BAKARDJIEVA S,GRYGAR T M,et al.TiO2-graphene oxide nanocomposite as advanced photocatalytic materials [J].Chemistry Central Journal,2013,7(1):41.
- [31] JIANG J,WANG Z P,CHEN Y,et al.Metal inhibition on the reactivity of manganese dioxide toward organic contaminant oxidation in relation to metal adsorption and ionic potential [J].Chemosphere,2017,170:95-103.
- [32] KUTAROV V V,TARASEVICH Y I,AKSENENKO E V,et al.Adsorption hysteresis for a slit-like pore model [J].Russian Journal of Physical Chemistry A,2011,85(7):1222-1227.
- [33] SOOKHAKIAN M,AMIN Y M,BASIRUN W J.Hierarchically ordered macro-mesoporous ZnS microsphere with reduced graphene oxide supporter for a highly efficient photodegradation of methylene blue [J].Applied Surface Science,2013,283:668-677.
- [34] OHSAKA T,IZUMI F,FUJIKI Y.Raman spectrum of anatase,TiO2 [J].Journal of Raman Spectroscopy,1978,7(6):321-324.
- [35] ZHU K R,ZHANG M S,CHEN Q,et al.Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal [J].Physics Letters A,2005,340(1):220-227.
- [36] SHUL’GA YU M,MATYUSHENKO D V,KABACHKOV E N,et al.Correlation between the E (g) (1) oscillation frequency and half-width of the (101) peak in the X-ray diffraction pattern of TiO2 anatase nanoparticles [J].Technical Physics,2010,55(1):141-143.
- [37] ZHAO Z W,TAY B K,YU G Q.Room-temperature deposition of amorphous titanium dioxide thin film with high refractive index by a filtered cathodic vacuum arc technique [J].Applied Optics,2004,43(6):1281-1285.
- [38] ZHANG H J,XU P P,DU G D,et al.A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange [J].Nano Research,2011,4(3):274-283.
- [39] RIGBY S J,AL-OBAIDI A H R,LEE S K,et al.The application of Raman and anti-stokes Raman spectroscopy for in situ monitoring of structural changes in laser irradiated titanium dioxide materials [J].Applied Surface Science,2005,252(22):7948-7952.
- [40] CAO L,SUN Q Q,WANG H X,et al.Enhanced stress transfer and thermal properties of polyimide composites with covalent functionalized reduced graphene oxide [J].Composites Part A:Applied Science and Manufacturing,2015,68:140-148.
- [41] WANG G Z,GAO Z,WAN G P,et al.High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers [J].Nano Research,2014,7(5):704-716.
- [42] HAFIZ S M,RITIKOS R,WHITCHER T J,et al.A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide [J].Sensors and Actuators B:Chemical,2014,193:692-700.
- [43] THAKUR A,KUMAR S,RANGRA V S.Synthesis of reduced graphene oxide (rGO) via chemical reduction [J].AIP Conference Proceedings,2015,1661(1):080032.
- [44] KUMAR R,SHARMA V,KUANR B K.Effect of annealing on electrical properties of zinc oxide/graphene oxide nanocomposite [J].Advanced Science Letters,2018,24(2):881-884.
- [45] MINITHA C R,RAJENDRAKUMAR R T.Synthesis and characterization of reduced graphene oxide [J].Advanced Materials Research,2013,678:56-60.
- [46] JORIO A,FERREIRA E H M,MOUTINHO M V O,et al.Measuring disorder in graphene with the G and D bands [J].Physica Status Solidi B,2010,247(11-12):2980-2982.
- [47] SUN J,NAM Y,LINDVALL N,et al.Growth mechanism of graphene on platinum:surface catalysis and carbon segregation [J].Applied Physics Letters,2014,104(15):152107.
- [48] FERREIRA E M,MOUTINHO M V,STAVALE F,et al.Evolution of the Raman spectra from a single-,few-,and many-layer graphene with increasing disorder [J].Physical Review B,2010,82(12):125429.
- [49] FERRARI A C,BASKO D M.Raman spectroscopy as a versatile tool for studying the properties of graphene [J].Nature Nanotechnology,2013,8(4):235-246.
- [50] FAUGERAS C,NERRIéRE A,POTEMSKI M,et al.Few-layer graphene on SiC,pyrolitic graphite,and graphene:a Raman scattering study [J].Applied Physics Letters,2008,92(1):011914.
- [51] YANG J H,ZHAO X T,SHAN X N,et al.Blue-shift of UV emission in ZnO/graphene composites [J].Journal of Alloys and Compounds,2013,556:1-5.
- [52] VALENCIA H,GIL A,FRAPPER G.Trends in the adsorption of 3d transition metal atoms onto graphene and nanotube surfaces:a DFT study and molecular orbital analysis [J].The Journal of Physical Chemistry C,2010,114(33):14141-14153.
- [53] LUO Z T,VORA P M,MELE E J,et al.Photoluminescence and bandgap modulation in graphene oxide [J].Applied Physics Letters,2009,94(11):111909.
- [54] RAMANAN V,SIDDAIAH B,RAJI K,et al.Green synthesis of multifunctionalized,nitrogen-doped,highly fluorescent carbon dots from waste expanded polystyrene and its application in the fluorimetric detection of Au3+ ions in aqueous media [J].ACS Sustainable Chemistry & Enginee-ring,2018,6(2):1627-1638.
- [55] LI Q Q,LI Z.AIE probes towards biomolecules:the improved selectivity with the aid of graphene oxide [J].Science China Chemistry,2015,58(12):1800-1809.
- [56] GRACIA L,ANDRéS J,LONGO V M,et al.A theoretical study on the photoluminescence of SrTiO3 [J].Chemical Physics Letters,2010,493(1):141-146.
- [57] YANG Y C,XU L,HUANG W Q,et al.Electronic structures and photocatalytic responses of SrTiO3 (100) surface interfaced with graphene,reduced graphene oxide,and graphene:surface termination effect [J].The Journal of Physical Chemistry C,2015,119(33):19095-19104.
- [58] YAMADA Y,KANEMITSU Y.Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals [J].Applied Physics Letters,2012,101(13):133907.
- [59] LIU Y Y,YAKOBSON B I.Cones,pringles,and grain boundary landscapes in graphene topology [J].Nano Letters,2010,10(6):2178-2183.
- [60] KOZAK O,SUDOLSKA M,PRAMANIK G,et al.Photoluminescent carbon nanostructures [J].Chemistry of Materials,2016,28(12):4085-4128.
- [61] LIANG Y T,VIJAYAN B K,LYANDRES O,et al.Effect of dimensionality on the photocatalytic behavior of carbon-titania nanosheet composites:charge transfer at nanomaterial interfaces [J].The Journal of Physical Chemistry Letters,2012,3(13):1760-1765.
- [62] WEN B,HAO Q Q,YIN W J,et al.Electronic structure and photoabsorption of Ti3+ ions in reduced anatase and rutile TiO2 [J].Physical Chemistry Chemical Physics,2018,20(26):17658-17665.
- [63] KIARII E M,GOVENDER K K,NDUNG'U P G,et al.A DFT study on the effect of supporting titania on silica graphene epoxy graphene and carbon nanotubes-Interfacial properties and optical response [J].Computational Condensed Matter,2017,13:6-15.
- [64] QU Y,ZHAO H N,NOBREGA D B,et al.Molecular epidemiology and distribution of antimicrobial resistance genes of staphylococcus species isolated from Chinese dairy cows with clinical mastitis [J].Journal of Dairy Science,2019,102(2):1571-1583.
- [65] DESCAMPS M.Disordered pharmaceutical materials [M].Weinheim:Wiley-VCH Verlag GmbH & Co KGaA,2016:183-200.
- [66] YU J G,SU Y R,CHENG B.Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania [J].Advanced Functional Materials,2007,17(12):1984-1990.
- [67] ZHANG S P,XU J,HU J,et al.Interfacial growth of TiO2-rGO composite by pickering emulsion for photocatalytic degradation [J].Langmuir,2017,33(20):5015-5024.
- [68] TIAN C X.Supramolecular self-assembly synthesis of ordered mesoporous TiO2 from industrial TiOSO4 solution and its photocatalytic activities [J].Microporous and Mesoporous Materials,2019,286:176-181.
- [69] ZNAD H,ABBAS K,HENA S,et al.Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photocatalytic degradation of methyl orange dye in aqueous media [J].Journal of Environmental Chemical Engineering,2018,6(1):218-227.
- [70] CAO M H,WANG P F,AO Y H,et al.Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst:graphene oxide/magnetite/cerium-doped titania [J].Journal of Colloid and Interface Science,2016,467:129-139.
- [71] CHEN F,YANG Q,Li X M,et al.Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst:an efficient,sustainable,and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation [J].Applied Catalysis B:Environmental,2017,200:330-342.
- [72] YAN M,HUA Y,ZHU F,et al.Fabrication of nitrogen-doped graphene quantum dots-BiOI/MnNb2O6 pn junction photocatalysts with enhanced visible-light efficiency in photocatalytic degradation of antibiotics [J].Applied Catalysis B:Environmental,2017,202:518-527.
- [73] SHEN H Q,WANG J X,JIANG J H,et al.All-solid-state Z-scheme system of RGO-Cu2O/Bi2O3 for tetracycline degradation under visible-light irradiation [J].Chemical Engineering Journal,2017,313:508-517.
- [74] CHAKRABORTY K,PAL T,GHOSH S.RGO-ZnTe:A graphene-based composite for tetracycline degradation and their synergistic effect [J].ACS Applied Nano Materials,2018,1(7):3137-3144.
- [75] TANG X D,WANG Z R,WANG Y.Visible active N-doped TiO2/reduced graphene oxide for the degradation of tetracycline hydrochloride [J].Chemical Physics Letters,2018,691:408-414.
- [76] QU L L,WANG N,LI Y Y,et al.Novel titanium dioxide-graphene-activated carbon ternary nanocomposites with enhanced photocatalytic perfor-mance in rhodamine B and tetracycline hydrochloride degradation [J].Journal of Materials Science,2017,52(13):8311-8320.
- [77] TANG Y F,LIU X L,MA C C,et al.Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide-CdS/ZnS heterostructure photocatalysts [J].New Journal of Chemistry,2015,39(7):5150-5160.
- [78] WANG W X,XIAO K J,ZHU L,et al.Graphene oxide supported titanium dioxide & ferroferric oxide hybrid,a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation [J].RSC Advances,2017,7(34):21287-21297.
- [79] WANG J,WANG P,CAO Y,et al.A highly efficient photocatalyst Ag3VO4/TiO2/graphene nanocomposite with a wide spectral response [J].Applied Catalysis B:Environmental,2013,136:94-102.
- [80] LI S,HU J Y.Photolytic and photocatalytic degradation of tetracycline:effect of humic acid on degradation kinetics and mechanisms [J].Journal of Hazardous Materials,2016,318:134-144.
- [81] XU D M,XIAO Y P,PAN H,et al.Toxic effects of tetracycline and its degradation products on freshwater green algae [J].Ecotoxicology and Environmental Safety,2019,174:43-47.